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ABSTRACT 

Alternative instrumental variable estimators 
for the slope in the simple errors in variables 
model are discussed. The modified limited in- 
formation estimator is used to construct a ran- 
domly weighted average estimator similar to those 
studied by Huntsberger. The maximum likelihood 
estimator is derived for the case in which the 
error covariance is known to be zero. The limit- 
ing distributions of these estimators are 
obtained. The modified maximum likelihood esti- 
mators, the randomly weighted average estimators 
and Feldstein's randomly weighted average esti- 
mator are compared in a Monte Carlo study. 

1. INTRODUCTION 

The errors in variables model differs from 
the classical linear regression model in that the 
independent variables are not observed directly, 
but are masked by measurement error. For such 
models it is well known that the ordinary least 
squares estimators are biased. Generally speak- 
ing, estimation of the parameters of such a model 
requires additional information. This informa- 
tion may take the form of knowledge of the error 
variances, observations on other variables which 
are uncorrelated with the measurement errors, or 
knowledge of the form of the distribution of the 
errors and (or) regression variables. The case 
in which observations on additional variables, 
called instrumental variables, are available is 
considered in this paper. For discussions of the 
other two cases see [2], [6], [12] and [13]. 

The use of instrumental variables to esti- 
mate the parameters of errors in variables 
models has been heavily used in economics. 
Reiersol [14], Geary [7], Durbin [3] and Sargan 
[15] discussed this method and most modern 
econometric texts contain a discussion of instru- 
mental variable estimation. See, for example, 
Johnston [11] and Goldberger [8]. 

The methods used to estimate a single equa- 

tion in a system of equations are closely related 
to the method of instrumental variables. In 
particular, for a just identified equation the 

two stage least squares and limited information 
maximum likelihood procedures reduce to the 
instrumental variable procedure. It is well 
known that these procedures yield estimators 
that may not possess moments in finite samples. 
Fuller [5] gave a modification of the limited 
information estimator and derived its mean square 
error through terms of order T-2. 

Huntsberger [10] investigated estimators 
of the mean of the normal population, constructed 
as randomly weighted averages of two estimators. 
One estimator, denoted by is unbiased for the 

mean, 81, and has variance Al. The other esti- 

mator, 2' is independent of and has an un- 
known mean, 82, and variance A2. We denote 

Huntsberger's family of estimators by 
A 

8H = a + (1 -á)e2, (1.1) 
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A 
where the weight, a is a function of the sample. 
The weight 

A (81- 82)2 
a - 
w A1 + A2 + 82)2 

(1.2) 

is an estimator of the fixed weight that mini. 
mizes the mean square error of a fixed weight 
estimator of the form (1.1). We call an esti- 

mator of this type a randomly weighted estimator. 
Huntsbergv demonstrated that the mean square 
error of 8H is a function of y, where 

= 181-1421 (1.3) 
The mean square error of 6H is less than that of 

if y=0. As y increases the mean square error 

rises to a maximum above the mean square error 
of e1. If Al A2 and the estimator with is 

used the maximum occurs near y=2.75 As y 
increases the mean square error of 9H approaches 

that of Changing the form of alters the 

mean square error function somewhat, but in all 
cases the function has the distinctive shape 
described above. 

Feldstein [4] recently proposed an estimator 
for the measurement error model with an instru- 
mental variable present. The estimator is an 
average of the instrumental variable and ordinary 
least squares estimators similar to (1.1). 
Therefore, one might expect the behavior of the 
estimator to depend in a critical manner on the 
true parameters. Feldstein, however, presented 
a Monte Carlo study showing his estimator to be 
uniformly superior to the instrumental variable 
estimator. 

For the errors in variables model with one 
independent variable we compare Fuller's estima- 
tor with randomly weighted average estimators of 
the type considered by Huntsberger and Feldstein. 
We shall identify two models which result in 
slightly different estimation procedures. 

2. THE MODELS 

Let the errors in variables model be defined 
by 

Y = + e 

X = x + u , 

where 

(2.1) 

Y is a Txl vector of observations on the de- 
pendent variable Y, 

x is a Txl vector of unobservable true values 
of the independent variable x, 

e is a Txl vector of errors, 

X is a Txl vector of observations on the 
observable random variable X, 

u is a Txl vector of measurement errors. 

Rewriting the model in terms of observable random 
variables we have: 

where - 



We assume the existence of a Txl vector of 
observations on an instrumental variable, z, with 
tth observation denoted by zt. It is also 
assumed that t= 1,2,...,T, are 

distributed as independent drawings from a multi- 
variate normal distribution with mean 0 and co- 
variance matrix 

e 
2 

0 

0 

where 

a o 

0 
0 

a 
xz 

o 

0 

xz 
a2 
z 

(2.3) 

axz 
0 and a2 > O. We note that the model as 

defined is equivalent to the system of structural 
equations 

Yt = + wt 

xt = + et , (2.4) 

where and Xt are endogenous variables, zt is 

an exogenous variable, and = 

The model is easily generalized to contain 
an intercept term and the assumption of zero 
means for all variables is an assumption of con- 
venience. The assumption of normality is strong- 
er than necessary for many of the results used 
in this paper, but simplifies the presentation 
and is the model used in our Monte Carlo study 
and that of Feldstein [4]. 

Under certain circumstances it may be known 
that aue =0. This situation is identified as 

model b). The situation wherein is unknown 
and unrestricted is model a). 

3. ESTIMATION 

3.1. Estimation when is unknown (model a) 

The reduced form associated with (2.4) is 
given by 

Yt = + t , 

= 6zt + , (3.1) 

where and are the reduced form errors. We 

assume > for model a). For this model the 

maximum likelihood estimator of is the instru- 

mental variable estimator,l 

=( E E Ytzt (3.2) 

t =1 t t =1 
Under the model assumptions, it is well known 
that 

T1/2;v-S) (3.3) 

See, for example, Fuller [5]. 
The matrix of sums of squares and cross 

products of residuals from the reduced form re- 
gressions is 

summations in this paper are over t as t 
ranges from 1 to T. Henceforth, we shall sup- 
press the subscripts and the range of summation. 
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where 

Ei2=EY2-[Ez2]-1(EYz)2 (3.5) 

,EXY-[Ez2]-1(Exz)(EYz) (3.6) 

W22= . (3.7) 

The family of modified limited information maxi - 
mun likelihood estimators of considered by 
Fuller [5] is defined by 

(T- 1)(EYz)(EXz) + aW12(Ez2) 

(T- 1)(EXz)2 + aW22(Ez2) 
(3.8) 

where a is a fixed positive real number. 

The ordinary least squares estimator of is 

= EXY. When using the mean square 

error as the basis of comparison, neither the 
ordinary least squares nor the instrumental vari- 
able estimator is preferred for all parameter 
values. 

We now construct an estimator for of the 
form (1.1) with weights (1.2k. In our construc- 
tion plays the role of e1 and 

where W22 and W are defined in (3.7) and (3.6), 

plays the role of 02. Our randomly weighted 

average estimator is 

(1- aw)R, 

where 

aw 
A1 A2 - 

(T-1)S1 
A2 

(T-5)w22 

(3.15) 

= (T- 2) - W] /R) 

The following theorem demonstrates that 
T1/2(R4 

-S) converges in distribution to the esti- 

mator studied by Huntsberger. 
Theorem 3.1.1. Let H(9,y,A1,A2) denote the 

distribution of the rand.mly weighted average 
estimator with weight (1.2). 

Let (X,Y,z) be distributed as a trivariate 
normal random variable satisfying model (2.1), 
(2.2), (2.3), (2.4) with 0 and - > O. 

Let all parameters except and be fixed. 

Let = 1/2 and where a and are 

fixed. Let be defined by (3.15). Then 

/2(ßw -ß) .H(o,y,A1,A2) 
, 

where 

x x z 

Al = (62az)-1ae 



A2 = (ax- 

3.2. Estimation when is known (model b) 

By assumption, the instrumental variable z 
is correlated with x and uncorrelated with u and 
e. Thus, we may write 

zt = Pat + vt , (3.18) 

where t = 1,2,...,T are normal independent 
(0,0-2) random variables independent of u. e. ar, 

x. for all t and j. Given our model, with the 

added assumption that sue = 0, the vector 

Xt, zt) is normally distributed with zero mean 

and covariance matrix V, where 

V = 

Pa 

PaX 

+,2 

(3.19) 

We shall obtain the maximum likelihood 
estimator of 8 = (ß, under 

the assumptions; 0, p 0, 0, > 0, 

0, > O. The inequality restrictions on 

p and are required for all parameters of 

the model to be identified. Once the maximum 
likelihood estimator of 8 has been obtained we 
shall demonstrate that, given the remaining 
assumptions, the estimator of is consistent 
for all ß, including = O. We also temporarily 
assume that at most one of the variances a2, 

e u 
or is zero. If two or more of the population 

error variances are zero, then the matrix 
defined in (3.19), is singular and the vector 
(Y,X,z)' has a singular normal distribution. 
This situation is easily detected in the sample 
because the matrix of sums of squares and cross - 
products of (Y,X,z)' is singular. Therefore, 
this case will be treated separately. Under the 
present assumptions, the space of admissible 
values for the parameter vector, , is denoted 
by a. 

If there are no restrictions on the matrix 
V, the maximum likelihood estimators of the 
êlements of V are given by the sample moments, 
A T 

' V12 

= T 1EXY, V13 = T and V23 
sXz 

= T (see [1], Chap. 3). The simple esti- 
mator of the parameter vector, e, is obtained by 

A 
solving the equations V = V for the parameters 

of interest. The following theorem defines the 
maximum likelihood estimator of (i.e. the 
estimator that maximizes the likelihood on the 
parameter space 8). 

Theorem 3.2.1. Let (Y,X,z) be distributed 
as a trivariate normal random variable with mean 
zero and covariance matrix defined in (3.19). 
Let the parameter and let G denote the 
event th t the simple estimator does not lie in 

Let 
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z = = (sYsz) 
and = 

mint , and define 

IN' 

sYz' X ' 

(3.29) 

Then the maximum likelihood estimator of 8 is 

le, 
if G and 

= 

if G and 
= 

8 = 
if and 

= 

(3.30) 

A 
8 , otherwise. 

That is, and > L(8 +) for all +e®. 

If exactly two of the variances are zero, 

then there is a perfect correlation between the 
two variables with no measurement error. In such 
a case the model can be reduced to a regression 
model in one of these variables and the third 
variable. The maximum likelihood estimator for 
the slope parameter of the reduced model is 
obtained by ordinary least squares. The maximum 
likelihood estimator was constructed under the 
assumption that the parameter is not zerR. It 
can be proven that the first component of is 
consistent for when = O. 

Recall that the modified estimator, 

has moment properties superior to those of 

The estimator, , defined in (3.29) can be 
modified in the way to produce the estimator, 

A -1 
+ 

with moment properties superior to On On the 

basis of these results and Theorem 3.2.1, we 
propose the following estimator for when 
is known to be zero: 

ue 

if G and min 1z' or 
or = 02 = 0 

V 

if G and R! or =0, 

0 

otherwise. (3.36) 

A weighted average estimator analogous to 

(3.36) is 

G and z' or 

or =0 
u v 

'6I114' 
if G and z, or =0, 

au# 0 

, otherwise, 

where is defined in (3.15). 

(3.39) 



An estimator patterned after the arguments of 
Feldstein is 

= + (1 (3.40) 

where 

= 

2 
= 

2 
= 

1 if ß>1 

A 
Feldstein defined K to be an estimator of 
K For details the reader is referred to 
[4]. 

otherwise. 

4. EMPIRICAL RESULTS 

Simulation experiments were carried out to 

compare the estimators 
OLS' 

^0-WA and . Our. study follows closely that of 

Feldstein [4]. in that study we considered 
two cases, T 25 and T = 100, with 1, 

aue = 0 and = a2 = 100. The remaining param- 

eters, au, and were also chosen to coin- 

cide with Feldstein's study. Two thousand 
samples were generated and the seven estimators 
were computed. The random number package, "Super 
Duper," from McGill University was used to gen- 
erate values for the normal random variables et, 

ut, xt and zt . 

Three conclusions are possible from the Monte 
Carlo results for estimators that do not use the 
information aue These are: 

1) The modified limited information estimator 
with a =4 has mean square error which is 
smaller than that with a =1 for all parameter 
sets. 

2) The modified limited information estimator 

with a =1 is very nearly unbiased for all 
values of the parameters. 

3) The estimator behaves like the randomly 

weighted average estimator discussed by 
Huntsberger. Loosely speaking, the mean 

square error of is larger than that of 

when y < 1.17. As y increases the rela- 

tive mean square error of reaches a 

maximum of about 1.2 for y between 2.0 and 
3.0. As y becomes larger the mean square 

error of approaches that of 

The superiority of over greater 

for the smaller correlation between X and z. 
This was expected because the two estimators are 

identical if = 1. 

Similar conclusions are reached when the 

1The estimator is not identical to that 
considered by Feldstein. 
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estimators using the information that are 

compared to that of . The ratio of the mean 

square error of is less than one for y=0, 

increases to a pe above one and then approaches 

one from above as y increases. Therefore, the 

comments made about the pair and also 

apply to the pair and The mean square 

error of is uniformly larger than that of 

The superiority of ßWA can be attributed to two 

factors. First, performs uniformly better 

than the instrumental variable estimator, 

Thus, a randomly weighted average of and 

is expected to perform better than a ran - 

dourly weighted average of and Second, 

is restricted so that the estimators for 

a2, and are nonnegative whereas only 
u e 

guarantees a nonnegative estimator for 

When the estimators using the information 
=0 are compared to those that do not, the 

estimators using the information are generally 

superior. 

5. CONCLUSION 

On the basis of this study Fuller's modified 

limited information estimator with a =4 can be 

recommended for instrumental variable estimation 

when aue is unknown and the objective is to mini- 

mize the mean square error of the estimator of ß. 

Likewise the adjusted maximum likelihood esti- 

mator, can be recommended if aue is known to 

be zero. The mean square error function of the 

randomly weighted estimators is similar to that 

obtained by Huntsberger for analogous combinations 

of normal estimators. That is, the randomly 

weighted estimator has a smaller mean square error 

than the modified maximum likelihood estimator if 

the bias in the second estimator is 'small' and a 

larger mean square error otherwise. 

Proof of the theorems and tables of the Monte 

Carlo results are contained in a larger manu- 

script which can be obtained from the authors. 
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